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I.
SECTION I

INMRODUCTION

The immediate purpose of calculations presented here is to provide

=.• - predictions of effects associated with earth pe. atration experiments con-

ducted at the Watching Hill site in Alberta, Canada, in mid-July 1974.

In particular, predictions of deceleration history and medium stre .

histories at specific locations were desired for comparison with experi-

mental measurements of these quantities. Such comparisons permit evalua-

tion of current theoretical prediction capabilities and, in addition,

Sprovide insights into the primary mechanisms and relevant phenomena

governing projectile penetration into earth media. Ultimate objectives

of the computational effort are (1) to develop methods for confidently

predicting loads on earth penetrating projectiles in order to facilitate

rational design of penetrators with a minimum reliance on empirical

testing, (2) to develop an understanding of Lhe detailed mechanisms in-

volved in earth penetration to the extent that the empirical soil factor
of Young's pene'ration equations 1 ' 2 may be correlated with appropriate

target medium propertieý, and (3) to establish the degree of complexity

in description of target medium properties necessary for accurate calcu-

lation of projectile decelerations, loads, and depths of penetration.

Two finite difference code calculations were made to estimate results

D 3,4of the Watching Hill experiments. The TOODY Lagrangian code ' was employed

to predict penetration performance of both a rigid and a deformable pro-

jectile. In both cases, the target medium properties were described by

using identical soil cap models. With the projectile considered as a

7 
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rigid body, the finite difference code is capable of more efficient

operations than when the projectile is taken to be a deformable body.

Rigid body calculations then permit examination of penetration to deeper

projectile depths in reasonable amounts of computer time. To verify the

validity of the rigid body assumption, a deformable body calculation was

I; Iperformed until the nose of the projectile was fully embedded. From the

deformable body calculation, stress and strain histories and distributions

within the projectile are obtained.

Projectile penetration experiments5 at the Watching Hill site in- I

eluded one for direct comparison with calculations in which the projectile

impacted the target medium at a velocity of 152.4 m/s (500 ft/sec). The

projectile, fabricated from D6AC steel, had a diameter of 0.165 m (6.5

inches), a length of 1.524 m (60 inches), and a mass of 181.44 kg (400 o

pounds). Nose shape was 9.25 CRH tangent ogive with a slight blunting

of the tip. Accelerometers mounted within the projectile provided

deceleration histories during penetrati.on. Integrations of deceleratinn

histories result in projectile velocity and position information including

depth of penetration. Projectile deceleration and penetration depth were

felt to be insufficient information for critically evaluating results of

computer code calculations, particularly the material property models

7employed in the codes. A much more severe test of target medium con-

stitutive models is provided by measurements of the medium response. For

these reasons, lithium niobate pressure or stress transducors8 were

incorporated into the Watching Hill experiments. Six stress-history

transducers, four of which were to measure mean stress and two radial

stress, were emplaced in the target medium in two vertical holes near the

vicinity of the projectile penetration locations. Positions of the stress

8
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transducers are indicated in Figure 1-1. At the position (range/depth

relative. to the projectile impact point) of 0.45 m/1.8 m, a mean stress

* transducer is lcated. A mean stress and a radial stress transducer are

located a'- 0.45 M/3.6 m, and at 0.45 m/5.4 m, two mean stress gauges are

• ~~pla,•,ed. A single radial stress gauage is located at 0.9 m/3.6 m. Gauges :

shown in Figure I-i at a range of 1.5 m were used for another projectil•

1penetration experiment but are physically the same set of gauges shown

at a range of 0.45 m ie experiment of primary interest. Measurements

of target response d.- .ectile penetration apparently have never

10
before been male; the successful recordinZ; of medium stress histories

I during the Watching 1.ll penetration experiments has provided valuable J(A

informatlon for more direct verifXication of ,omputer code calculations.

OutpuAu desired from computer code calculations has been specified.

in detail and is briefly summarized in Figures I-i and 1-2 for the

rigid body calculations. Similarly, for the deformable projectile cal-

culations, desired output is indicated in Figures 1-3 and 1-4.

6
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SECTION II

j~i MATERIAL MODELS FOR TARGEi MEDIUM

p The Watching Hill Blast Range of the Canadian Defense Research Estab-

lishment, on which site the earth penetrator experiments were conducted,

is located about 30 miles north of Medicine Hat near Suffield, Alberta.

The target medium at Watching hill consists of a thick succession of

glacial lake deposits, outwash materials, and glacial tills; the near

surface deposit is composed of thin interbedded layers of lacustrine si.lt,

sand, and clay sediments. The medium is porous and contains varying

14
amounts of water, increasing with depth. For purposes Gf modeling the

target medium in computer calculations of projectile penetration, the

medium has been represented by four uniform, homogeneous isotropic layers.

The three uppermost la-ers were each taken to be 2.4 m (7.87 feet) thick..

The fourth layer, beginning at 7.2 m (23.6 feet), is below the water table. V

Material properties derived from uniaxial strain and triaxial stress

exerm-.t 12  13,1~4*experimnins have been specified for each of the four layers.

Of course, many more, and much thinner layers actually exist in the region
of interest. It was felt that the short time available for material
modeling made it necessary to average properties into the sturcture chosen,
usi.ng overall similarities of adjacent materials as guides. It was also
necessary in some cases to estimate the effe,-ts of loading rates on
material response. Therefore, the term "data" appearing in this section
should be taken to mean what is commonly referred to as "recommended
properties."

12
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For the calculations of projectile penetration with both a rigid

and deformable projectile, a soil cap model is used to describe each of

the four layers of the Watching Hill medium. The cap models employ a

failure envelope or fixed plastic yield surface represented by a function

o"of the Corm f (T ,p) = 0 in which p is the mean stress or pressure and T I
is the octahedral shear stress (see Figure 1I-1). Octahedral shear stress

. I,is defined by T = (i-i Vi /3)-, where the deviator stress, a' i-

P6. The "cap" on this surface is given by f 2 (p,¶,p) 0, where p is
Lij 2 p p A

the plastic volumetric strain. Position of the cap on the failure envel-

is determined by sp, and the cap expands or contracts as ep .ncreases or

decreases. Plastic strain increments are determined from f and f by

means of the associated flow rule., Figure 11-2 illustrates an example

. LP

S / ._ If (P,"'

Figure II-1. Cap Model Illustrating Failure Envelope,
Cap, a Stress Path, and Cap Contraction

of the hysteresis produced by a cap model description in a series of load-

unload cycles of a uniaxial strain test and the corresponding path in T - p
Ssupplie12

space. Information for the Watching Hill target medium consis-

13
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ted of a single uniaxial strain, load-unload path and a failure envelope

considered to be representative of each of four layers of the medium.

From the data available for each of the idealized four layers, parameters

were determined for the functions f1 and f 2 * For Layers 1, 2, ana 3, the

failure envelope is given by I
T A -C exp(-Bp)

and for Layer 4 by

SA[ 1 3 p/B)2 ] + C,p < B/3

T A+ C, p kB/3

where p is pressure. The yield surface ellipse for Layers 1, 2 and 3 is
described by

S[(X- L) ( pL) /R

where X represents the intersection of' the cap with the p axis and is

given by
x -L,,n(l - •/)/

L represents the vaiue of p at which the cap and failure envelope intersect,

and at which the cap has a horizontal tangent and is given by

II
G t for t 0

p 0 for ,<0

where t is the solution of the transcendental equation

R(+ RA - C exp(-Bt/4-3 )1 X(Sp)

• .4
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B D EA

r, Figure 11-2. Loading and Unloading Cycles for Cap Model
Material in Stress-Strain and Shear Stress-
Pressure Space

For Layer 4, the yield surface is taken as

In the calculation, the cap determines the plastic strain increment

whenever p ! L/s. This, coupled with the fact that the normal to the

cap never has a negative spherical component, precludes bulking, or dila.-

tancy, when the loading state is on the cap.

The initial value of the quantity X for each material was taken to

be one percent of the value necessary for the cap-envelope intersection

point to be at p 0 0. This results in a very small initial elastic range.

As plastic deformation occurs, the growing cap remains centered on the

origin, until X exceeds 100 times its initial value.

-15
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I
Elastic bulk moduli are given by

K B B - B1 exp(-B2 P)0

for Layers 1,, 2, and 3, and by

oK = MinýBo exp(B2 p/B 1); B exp(B2 /•/)

for Layer 4. The elastic shear moduli are

3(1- 2v P + S1 exp(-Sp)

ii2(1 + s(o son 2  K

Sin ýhich v is Poisson's ratio. Constants for the various expressions are

listed in Table II-1. Figures HI-3 through 11-6 compare data obtained

from the cap models (which are used in code calculations of projectile

penetration) witn laboratory data from uniaxial strain and triaxial stress

experiments. Figures II-7 through II-10 show data for uniaxial strain
paths in T - p space and corresponding cap model results. The cap modol.

for Layer . fits the data well; however, for Layers 1, 2, and 3, less

satisfactory agreement between model predictions and experiment is obtc.:.ned

with the model response being less stiff in shear than indicated by da~a.

This suggests the need, in matching static laboratory data, lor a moreA

elaborate model than the 12-parameter model used. One such model has

been suggested in which the strain hardening cap is described by an

ellipse of variable eccentricity. Cap model formulations with 29 para-

meters available for fitting data have been described17'lS these forwu-

lations undoubtedly can better fit the available laboratory data and could

be employed in future calculations to assess sensitivity of calculated

projectile penetration results to cap model expressions arid parr"ieterx.

16
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,,IMTABLE II -I

Cap Model Constants iCt iýtt Frnir Layers of the Watching Hill Medium

[Constant Units Layer I. Layer 2 Layeý.' 3 Layer 4

p0  M/r 3  1.490 1.426 1.859 1.971-

0 (GPa) o.6237 o.8889 1.214 1.1.03

0.31. 0.14 0.257 0.48

B 0 0.7622 0.8622

2.

B1  Mh --- 2---

* 2  - 2.139

S1  0 0.35 -0.8 0.51

2S(MPa),2 0 0.3859 o.3~464 0.6603

A (MPa) 1.966 7.604 0.7084 8.1.23 x 10-

B ýc1pa) 1  346.4 91.42 468.5

B (mPa) - ----- 3.1.02

C (MPa) 1.902 7.546 0.6368 8.1.23 x 10-2

D (GI~a, 38.61 1.31.2 150.0 800.0
-4

R 2.252 2.179 2.785

1.7
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It should be pointed out that the cap model, as implemented in TOODY

for the calculations reported here, differs in some details from the cap

15model described by Nelson et al. In particular, the relations for the

variation of bulk and shear moduli with p and T do not satisfy the com-

patibility requirements which arise from the assumption of the existence

of an elastic strain energy function. Also, the particular function chosen

to model the cap -for Layer /4 exhibits a "corner" on th. pressure axis,

reminiscent of those appearing in the Tresca yield condition, for example.

"Th effect of these variations on the particular calculations reported

here is difficult to assess, particularly as no purely spherical stress

states were encountered in the calculation.

.2
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SECTION III

RIGID PROJECTILE CALCULATIONS

The TOODY 3 Lagrangian wave propagation code was used to predict tar-

get and penctrator motions and stresses during the experiments planned

for the Watching Hill test site. The code is termed Lagrangian because

the nodes of the calculational grid move in response to the local stress

gradients. The basic process the code performs is to solve difference I
analogs to the partial differential equations describing the balance of

momentum, mass, and energy, and the constitutive relations. This procedure

is executed at each node of -the grid, the time is then advanced, and the I
whole process repeated until the desired final time of the calculation

is reached.

Since the time-step with which the calculation advances is control-

led by the minimum distance on a mesh over the entire grid, large distor-

tions can result; in an inefficient calculation. Large distortions can

also degrade the accuracy of the nunerical methods used in the code,

which then yield unrealistic resalts, For these reasons, the TOORE/ 4

code was developed to permit carrying Lagrang.Lan code calculations past

the point where they would otherwise have to be abandoned. TOOREZ allows

the user to redistribute the nodes of the calculational grid (i.e. rezone

the problem), then repartitions the mass, momentum, and energy in such a

way that all these quantities are conserved. Using the outpuL from the

rezoning code, the calculation can then be resumed.

The positions of nodes in the calculational grid whi,'h originally

lie on the axis of' rotational symmetry are prevented from occupying the

4.
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space occupied by the penetrator. The motion of each of these nodes is

first calculated in the standara uay from the stress divergence, including

the effects of soil-penetrator friction, if any. In this calculation, a

condition of perfect slip was assumed for the soil-penetrator interface.

If the standard motion calculation for the node yields a position on the

surface of, or outside, the projectile, no adjustments are necessary.

When a node is calculated to lie inside the penetrator, adjustments to

the velocity and position are made so that the normal velocity relative to

the penetrator is zero, the tangential velocity has that value already

calculated, and the position is on the penetrator surface. In resolving

the velocity into normal and tangential components on the ogival nose, the

position of the node at the previous 'time step is used to evaluate the

local normal direction. The areas and volumes for material and momentum

zones adjacent to the penetrator are adjusted, where necessary, to include

the effect of the penetrator surface.

At the beginnn of each time step of the calculation, surface trac-

tions for all soil zones in contact with the penetrator are integrated

to give the total axial force acting to decelerate the penetrator. For

a zone in contact with the penetrator surface the stress is assumed con-

stant, and the axial contributions of the normal stress and frictional

stress, if any, are expressed as functions of position on the penetrator

surface. These are integrated over the range covered by the zone, so that,

on the nose, changes in the local normal direction and surface area are

accounted for.

For this calculation, it was desired to model the target to a large

depth. Therefore, the initial zoning of the target region utilized expon-

26
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tially increasing zone sizes to allow good resoluti•on near the surface

and maintain a reasonable number of zones in the problem. Table ITI-l

and Figure III-i describe the initial zoning. As penetration depth

increases to the icgions. where the zone sizes become too large for good

resclution, the rezoning code is used to adjust the zoning, providing

smaller zones in front of and on the nose of the penetrator. It was

determined early in the calculation that no significant changes occur in

the soil once the nose of the 13netrator has passed by, so nothing is

lost by decreasing the resolation behind the penetrator.

TABLE 111-1

Initial Zoning for Rigid Projectile Calcul.ation

FOR ALL REGIOnS: z z + A z (exp((J, j) tn(l + X -0 0 x z •

x x. + _ (exp((i - io) tn(l + - i)

REGION: ,.jo(in) x. (m) z (m) 6x(m) o

0.

'( :5 i_< 25;67--5 J <_ 91) 0. 0. .03 .03 0.02 0.02 91 1

2
( -- i :5 25;

i :j< 67) 0.9127 0. 0.0483 .03 .05 .02 67 1

3
S(2~26 _i _46;

1 j_ 68) 0. 0.9127 0.0483 0.0483 0.05 0.05 68 26
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The calculation was carried out to a time of approximately 52.5 is,

at which time the penetrator had reached a depth of 7.3 m, and retained

a velocity of 129 m/sec. The peak deceleration encountered by the penetra-

tor was approximately 55 g's, and at the end of the calculation the deceler-

ation anpeared to be decreasing, as the nosc begins to enter layer 4, to a

value less than 20 g's.

Taking a constant deceleration of 20 g's in the assumed uniform materi-

al. of layer ~4 'below 7.2 in leads to a value of about 0.7 sec for total time

to penetration depth and a value of 50 M for final depth of penetration.

These are the results expected, based on calculated projectile motion

through the first three layers, had the calculation been carried out u~ntil

the penetrator comes to rest. The duration of projectile penetration and
final depth thus predicted are much larger than observed in experiment,

suggesting a shortcoming in the calculation dae possibly to friction

effects or to use of a material response model for Layer 4 which is not

an accurate representation of the actual medium encountered by the penetra-

tor (see Section V for further discussion).

The calculations indicated that the value of deceleration achieved

was somewhat sensitive to zone size, although the preci.se degree of this

sensitivity was not known. For this reason, an analysis of the effect of

zone size was undertaken. Three calculations were run with a projectile

penetrating 0.6 in of Layer 1, with initially square zones of 0.015, 0.03ý,

and 0.06 m. Initial conditions were identical to those of the main problem.

Figures 111-2 and 111-3 show deceleration-depth curves and normal stress

distribution along the nose at a penetrator depth of 0.4 in, respectively.

It may be noted from tnese graphs that while alterations in initial zone

29
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size have a marked effect on the normal stress distribution, the decelera-

tion is much Less affected for the range of zone sizes considered. This

is evidently jaue to the fact thrt where disparities in the normal stress

distribution, are largest, the area over which the normal stress acts is

relatively small. That is to say that for the smaller mesh calculations

the normal stress distribution along the projectile nose has its maximumK

shifted toward the nose tip (see Figure 111-3). Figure III-4 shows pres-

sure vs radial position at the depth of peak normal stress, at a penetra-

tor depth of 0.4 m. As expected, the finer zoning allows resolution of

steeper gradients. Some sort of extrapolation to obtain the stress at

the soil-projectile interface, rather than one half-zone away, would

have yielded somewhat higher decelerations, but pr bably not enough

higher, taken by itself to cause a large change in duration of the cal-

culation or to influence significantly the values of projectile decelera-

tion calculated. A combination of considerably finer zoning Uhan was

used in the main calculation, and extrapolation to find stress at the

soil-projectile interface would provide a slightly more realistic cal-

culation, but would also be quite expensive in terms of computer time.

Increases in calculated normal stress and projectile decelerations due

to finer zoning and extrapolation are estimated to amount to at most 20%

using the techniques employed in the rigid body calculation.

It was hoped that the rezones of the problem could be accomplished

with no significant effects on the histories being accumulated at the

selected points in the soil. This goal is really only a reasonable one

for those quantities and their integrals which are conserved during the

rezoning process. The higher degree of smoothness of the velocity his-

tories as compared to the stress measure histories reflects this fact.
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Rezones of the problem were performed at

TfTIME (ms) DEPTH (m)

1.38 .21

.j3.05 .46

8.0 1.2

11.9 1.78
14.6 2.18

23.4 3.45

33.8 4.88

41.6 5.91

Due to tape handling problems, history information for the period

from 11.9 ms to 14.6 ms was lost.

Appendix A presents results of the calculation in graphical form.

Figures A-i through A-5 show deceleration, velocity and depth vs. time,

and deceleration velocity vs. depth. Figures A-6 through A-9 show pro-

jectile kinetic energy, soil kinetic energy due to radial velocity. soil

kinetic energy due to vertical velocity, and total kinetic energy of the

soil, all per radian, and all vs. time. Table A-1 and Figure A-10 pro-

vide keys to figures A-11 through A-78, which show histories of various

quantities at selected points in the soil. (Where they appear, radial

and axial stress components are plotted positive in compression). Fig-

ures A-79 through A-141 show the calculational grid near the projectile,

normal and shear stress distributions along the projectile, and contours

of selected quantities in the soil. Due to the rezoning method used, only

the grid lines with depths near that of the nose region are representa-

tive of target deformation. Also, for projectile depths greater than

0.4 m, the spatial scaling is distorted, so that radial distances appear

twice as large as their actual value. The grid plots contain "x" in the
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center of a zone calculated as failing in tension, and "c" where the

stress state is on the failure envelope. When a mesh is calculated to

fail in hydrostatic tension, its pressure is set to zero, and its stress

deviator is limited by the smaller of the deviator stress on tae cap and

the failure envelope at zero pressure. Therefore, a zone may, in some

cases, contain both x and c. It should a-Is-. be noted that the normal and

vshear stresses plotted are actually those at zone centers; i.e., one-half

zone away from the projectile. For these plots, a positive normal stress >
and a negative shear stress would retard the projectile.

Table A-2 provides a. key to Figures A-79 through A-i~41, It should

be noted that the sign convention for stress components is opposite that

used for the history plots; i.e. consistent with a positive normal stress

being one of extension.
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SECTION IV

DEFORMABLE PROJECTILE CALCULATION /

To test the aissumption of a rigid body ind to calculate the response I 21
of tht vehicle to the imposed loads, a second TOODY calc.lation was per-

formed. The vehicle was zoned as shown in Figure IV-1, and the ground

was defined by 30-mm squares to a radius of 0.6 m and a depth of 0.9 m.

For this calculation the 450 conical tip was included, as on the actual.

vehicle, rather than the idealized perfect ogive used in the rigid body

calculation. Figure IV-. also shows points in the projectile at which

the progress of the calculation das recorded and plotted. Plots were

also made for points in the soil corresponding to depths of 0.1 ir, 0.2 in,

and 0.4 m, with distances from the central axis of 75 imm, 0.14 m, 0.28 m,

0.44 m, and 0.58 m.

The spice.r was treated as an aluminum shell. containing a vacui.um.

The electronics package was modeled with a hydrodynamic "foam" equation

of state. The rest of the vehicle was treated as steel. The ground .as

represented by the cap model for Layer i. The input parameters for the

vehicle materials were

~3)1
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FIGURE IV-1

ZONING OF THE DEFORMABLE PENETRATOR,
* OINTS AT WHICH HISTORY WAS RECORDED
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F:

Steel Aluminum Electronics

PO(Mg/m3 7.850 2.700 1.1400

co(km/s) 4. 61o 5.390) 2.060

.296 .333 --

K (-u2 (GP.) l66.8 (8. 4 5.6

Y (GPa) 1.324 0.02 --

c (m/s .... 500

•; e
0 e (M~) -... 1

P (Mpa) .... 10

19iIod L ,_The last four parameters pertain to the p-a foam model ce is thee--

ambient value of the sound speed in the virgin foar at the initial disten-

tion a' Pe is the elastic limit, and Ps is the compaction pressure for

which all voids are ass-umed to be closed. Therefore, co is the bulk

sound speed of the ,Vully comop-cted solid.

Friction at the vehicle-soil interface was neglected, aind separation

of soil from projectile sirfacE. was not permitted. The calculation wns

run to a time oj. 2.40 msec, at which time the nose tip had reached a depth

of 0.398 m. This calculation consunsdci 2.94 hours of' CDC-6600 central

processor time. The problem was not rezoned.

Figures B-1 through B-7 in Appendix B describe the configuration,

velocities and stresses 0.40 msec after impact, with the nose tip 0.09l4.

m balo..: the ground surface. The situation at 1.10 msec is shown in

Figures 3-8 through B-1-4, corresponding to a penetr'tion depth of 0.20 m.

Figures B-15 through B-21 give the final configuratioti. Velocity and

•:. ,•



stress contours are not showqn for the projectile material because the high-

frequency ringing of the vehicle renders contours there inccaprehensibi3.

A f2w contours are shown as passing through the projectile region; these

are intended to clarify the relationship of the contours and are unrelated

to actual values in the projectile material.

S......Figures B-2'2 through B-30 display motion history for three points

in the projectile. The motion of points away from the tip is dominated

by ringing that masks the rigid body deceleration of the vehicle. Point

i 5, 40.5 mm back from the tip and 6.35 mm from the axis, experienced an

initial acceleration associated wita deformation of the nose on impact,

followed by a deceleration as the nose absorbed the initial ground resis-

tance (Figure B-28).

Stress histories at selected points within the vehicle are shown in

Figures B-31 through B-36. In these and subsequent plots, "J2" is the

label for the quantity iwhich was the requested output quan-

tity, where a' is te deviator stress tensor. This quantity is propor-

-F," 73.Ata point in the projec-tional to octahedral shear stress, At t peak mn tress

tile 61 im-n from the tip and 12 mm from the axis, the peak mean stress

exceeded 0.14 GPa nd iJ exceeded 0.28 GPa (Figures B-35 and B-36).

At the tip of the vehicle (not plotted), mean stresses in excess of 0.5

GPa and axial stresses in excess of 1.3 GPa were noted both in compres-

sion and tension, and plastic yielding occurred.

Figares B-37 through 3-39 contain normal stress histories at three

points along the nose of the pr6jectile (see Figure )N-l); the shear

stresses were assumed to be zero. Because stresses were not calculated

at the interface, the values given were calculated within the vehicle,
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one-half mesh width from the surface. The largest stress in these fig-

ures is 43 MPa, which occurred at the point closest to the nose tip

(Figure B3-37).

The total kinetic energy calculated for the soil followed. the his-

tory shown in Figure B-40. The saw-tooth pattern is caused by numerical

noise, a peak occurring each time the nose tip encounters a new grid.

point in the soil. The noise is accentuated because the total kinetic

energy in the soil is small, because it is concentrated in a few zones

near the axis of symmetry, and because the approximation used to sum

the kinetic energy has undesirable characteristics when applied near the

axis of symmetry. This effect was not seen in the rigid body calculation

(Fig. A-9) because the time interval chosen for recording the energy

happened. to be almost exactly one period for this oscillation, and

because the omission of the conical tip allowed a smoother solution in

the rigid case.

The history of motion and stresses at the selected points in the

soil are shown in Figures B3-41 through B-112. Histories were also

recorded at three points with range 0.6 mi from the, impact line, but the '
mean stress never exceeded 10 kPa, the level required to activate cal-

culation of motion. Before comparing these results to the rigid pro-

.jectile calculation, the times shown must be increased by 0.4 msec toI

account for the nose tip being 26 mm shorter and for the tip being buried

33 mm at. the beginning of this calculation. With this adjustment, the

soil histories are in excellent agreement. The peak mnevn stress observed

at the closest point (range .105 m, depth 75 mm) was 2 MPa, and the

largest radial velocity was 16 in/s (Figures B-41 through B-)46).
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The total momentum in the vehicle was summed at 0.2-ms intervals and

j then differenced to obtain the deceleration history shown in Figure IV-2.

The deceleration is up to thirty six percent larger than the results for th.3

rigid body calculation (Figure 111-2). This difference is related,

in part, to the use of an ideal ogive in the rig d body calculation,

compared with the 45' tip appearing on the actual vehicle and included

in the deformable body calculation. The soil velocity reaches 180 m/s

on the 450 nose tip, whereas in the rigid body calculation the soil

velocity does not exceed 60 m/s. In the case of the perfect ogive, the

soil must reach a velocity of at least 50 m/s to get out of the path of

the onccming vehicle. The higher velocity produces larger stresses in

the soil; with the deformable body stres-s components large.c than 12 MPa

were calculated, whereas no stress in excess of 8.') MPa was noted for

the rigid body calculation.

Unfortunately, there are no hard experimental data with which to

compare the calculated transient vehicle response. However, the

experience with this deformable body calculation demonstrates that cal-

culation of the early-time vehicle loads and response is a reasonable

and straight-forward application of' existing numerical methods, in

sharp contrast to the difficulties in calculatilng penetration depth or

to the impossibility of obtaining this information from force law or

cavity expansion theories.
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FIGURE IV-2
DECE~tLERATION HISTORY FOR DEFORMABLE PROJECTILE
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SECTION V

COMPARISON OF PREDICTIONS WITH EXPERIMENTS

More than a dozen projectile penetration experiments were conducted5

at the Watching Hill site with projectiles of various diameters, weights,

lengths and nose shapes and with projectile impact velocities ranging

from 93 to 202 m/s (305 to 660 ft/sec). Test number 6 had an impact

velocity of 150 m/s (493 ft/sec), a o.1651 m(6 .5 in) diameter projectile

of mass 181.44 kg (400 lb) with 9.25 CRH tangent ogive nose. This test

closely matches conditions employed in calculations and provided pro-

jectile motion data for comparison with predictions. Test number 4 was

performed5 with a 0.1524 m (6 in) diameter projectile of mass 127.12 kg

(280 lb), 6.25 CRH tangent ogive nose and impacted at a velocity of 158.5

m/s (520 ft/sec). From this test, medium stress histories were obtained

with wihich calculated results can be approximately compared.

Projectile Motion

Projectile motion measurements5 were obtained from accelerometers

mounted within the projectile and consist of deceleration versus time

iduring penetration, together with projectile velocity and posit-on his-

tories derived from integrations of deceleration data. Medium response

109measurements were made with six lithium niobate stress transducers 9

at four locations within the top three designatcd layers of the target

* medium. From projectile deceleration data, information is obtained

regarding the natture of the resistive forces offered by the soil medium

in retarding the projectile's motion. Also, together with calculations,

inferences regarding frictional forces acting on the projectile may be

"made.
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Further, from the deceleration history indications are obtained of the

gross layering structure within the target medium. From dynamiic stress

data amplitudes, durations and arrival times are obtained of the pressure

disturbance produced in the medium by projectile penetration. The comn-

parison of this information with calculated results provides one measure

of how accurately the medium response is modeled in caLculations.

and Figures V-l and V-2 illustrate projectile decelerations, calculated
::'and measured (Test No. 6, real time, 200 Hz LPF) 5 The ri-gid body cal-

culation with zero friction predicts a. deceleration of about 55 g's which

remains roughly constant during projectile penetration through layers 1

and 2 (each 2.4 m thick). After projectile entry into layer 3 (also 2.4

m thick) calculated deceleration falls to aboil ?5 g's and in layer 4

deceleration again drops to 20 g's or less. This stair-step result is

related to the material properties assigned to each of the four idealized

layers (Section II). Layers I and 2 bave shear strengths waich differ

at most by a factor of" 2 at pressures below 10 ia (see Figures 11-3 and

11-4). Layers 3 and 4 both have shear strengths much less than layers

1 and 2 and the strengl;h of layer 14 material is considerably less than

that of layer 3 over the pressure range of interest (see Figures 11-5

and II-6). Assuming that the soil medium's resistance to shear deforma-

tion is the primary mechanism :i.nfluenc:ing projectile deceleration level

then the shear strength properties attributed to the four layers, and

utilized in calculations, account for the stair-step deceleration his-

tory calculated as the projectile penetrates layers 3 and I. Measutred

deceleration levels in layers I and 2, as indicated by the data trace, '.

ft , ft
the smoothed (by a a(t)dt/J dt) data curve, and the effective con-

00

stant deceleration over each designated layer are greater than calculated.
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Comparing calculated and measured average deceleration levels

(Table V-l) for each of the first 3 layers it is seen that predicted

values are 23, 31 and 13% lower, respectively than observed. For layer

4 the difference is considerably greater and the reasons for this are

I k, discussed further below.

Since the average decelerations, predicted by the no friction cal-

culation, are less than those observed one may speculate whether or not

"the differences are a measure of the friction forces operative. For

layers 1, 2 and 3, it is seen (Table V-l) that the difference is greatest

for ..he layer 2 of highest shear strength and least for the layer 3 of

lowe:tt shear strength. it is apparent that the differences betweeniI
experimental and predicted average decelerations are in monotonic cor-

respondence to shear strengths of the materials at the normal stress

experienced on the projectile nose (Figures A-98, A-116 and A-134).

This suggests that a form of the friction law involving the second

invariant of the deviator stresses, such as TC T (Tf = frictional

stress along soil projectile interface, T = octahedral shear stress),

is not inconsistent with data. Similarly, the data of Table V-1 sug-

gests that a friction law related to projectile velocity is probably not

correct.

It is of interest to explore the possible sources of discrepancy

between calculations and experiment to determine whether or not more

definitive information regarding friction forces may be obtained

4t 5



Table V-1

Difference Between Predicted and Measured Average Projectile
Decelerations in the Four Layers Assumed for the

Watching Hill Medium

Average Deceleration (g's)

Layer Calculated* Observed Difference (%)

1 50 65 23

2 55 80 31

3 35 1ý0 13

* No Friction

in order to refine or perfect the prediction technique. Sources of

discrepancy include errors in the deceleration measurement, errors in

laboratory measurements of material properties, approximations or assuin-

ptions made in calculation of the penetration problem and possible in-

accuracies associated with the computational method. Approximations and

assumptions made in calculation of the penetration problem include neg-

lect of variations in lithostatic pressure with depth, neglect of friction

forces, layering in target and use of the soil cap material response model

to represent the target medium Inaccuracies in the computational method

involve size of mesh and the closeness with which the cap model is made

to represent laboratory data on material properties of the medium.

While the uncertainty associated with each of these sources of

error is not known, it is expected that taken in combination all the

sources of error from both experiment and calculation are great enough

to account for the 13 to 31% discrepancies noted between predictions and.

4~6
I,,



observations. As a result, no definitive conclusions can be drawn re-

garding the absolute magnitude of friction forces contributing to de-

celeration of the projectile in layers 1, 2 and 3. However, it appears

that the friction forces are most likely less than 54o of the total

1'• axial force acting on the projectile. California Research and Technology

"20
predictions, obtained with friction on the projectile specified by

f o0.6 J yielded deceleration amplitudes of 110 g and 125 g for
f, Jax

layers I and 2 respectively. the function describing

the failure envelope, evaluated at the normal stress acting on the pro-

jectile. The contribution from friction to the total axial retarding

force was about 55% and 560, respectively. This amount of friction is

clearly too great.,, producing decelerations larger than observed. At

most, the amount of friction for layers 1, 2 and 3 is that suggested

by differences indicated in Table V-i.

:, ,.The difference between measured and calculated decelerations in

layer 4 material is likely greater than can be accounted for by uncer-

tairties in the experimental data on deceleration and in the computation-

al method. The large discrepancy is felt to be a consequence of material

property data and the resultant material response model which is not

representative of the actual material of layer 4. Credence to this

supposition is given by the full experimental deceleration record5

shown in Figure V-3. At a depth of 7.2 m, where layer 4 is assumed to

begin, projectile deceleration begins to increase and from 7.2 m to 10

: •m the projectile experiences an increase in retarding force which implies

a layer of greater shear strength than that of layer 3. Below a depth

of 10 in the projectile enters another layer of lesser strength than the

4i last (but still greater than layer 3 strength) and maintains a nearly
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constant deceleration of slightly more than 60 g's. These observations

ind:icate that the target medium would have been modeled better with five

layers rather than four and also that the material properties used for layer

four arc riot representative of any of the layers assumed for the penetrated

area of the Watching Hill medium. In retrospect, it is apparent that a

prior choice of four layers for use in calculations was not the best.

Considerably improved results for predicted deceleration history would

be obtained in a recalculation of the problem by using five layers rather

than four, by taking layer four to be much stiffer in shear than that

used in the first calculation, and also by employing a small amount of

friction.

Further comparisons of calculated projectile motion with information

derived from deceleration data are shown in Figures V-4 through V-8.

Of particular interest among these is Figure V-7 for deceleration versus

velocity. Within a given layer the calculated curve is independent of

projectile velocity indicating a constant retarding force within each

uniform layer of material. This result for the Watching Hill medium seems

to confirm the Corce law relationship proposed by Robins and Euler 1 as
I

opposed to those, such as Resal's, which require an explicit dependence

on projectile velocity.

Target Medium Response

To measure medium response during projectile penetration, six lithium

niobate stress gauges were located1 0 at positions as indicated in Figure

V-9a. Figure V-9b illustrates the orientation of four penetration experi-

ments about the stress transducer locations and Table V-3 lists particu-
5

lars f•or those four penetrator experiments.

2119
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Table V-3

Characteristics of Projectiles Penetrating
Medium in Neighborhood of Stress Gauges

Projectile
Test No. Mass (Kg) Diameter (m) Velocity (m/s)

2. 127 0.152 174

2 181 o.165 125

3 2127 0.152 122

14127 0.152 3156

No detectable signals were sensed by any stress transducers which

were more than 1.2 11 horizontal distance from thue projectile path.

Excellent stress histories were measured for penetrator test number 4.

Also, the g'auge in hole B measured a signal from penetrator test numlber

2. Data wero obtained from penetrator test number 3 also, but were un-

fortunately lost during playback of recording tapes.

Measured stress histories are compared with those calculated in

Figures V-10 through V-15, where it is seen that amplitudes, pulse

shapes and arrival times are all in generally good agreement with predic-

tions. 7Zero time in Figures V-10 through V-15 is when the projectile

is 0.3 in above target surface. Peak values of stresses are suummarized

in Table V-4 where uncertainties in measured peak stresses associated

with base line shift are also tabulated. Error in peak stresses is 14%

or less for stress transducers closest to the impact axis (0.45 m). At I
greaiter distances from the impact axis, error due to base line shift

increases appreciably as the magnitude of the signal goes down. Errors

from other possible sources are difficult to estimate. The extent to

• • " 56
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which earlier penetration experiments disturb the medium and possibly

influence the accuracy of stress history measurements on subsequent

experiments cannot be ascertained with available data. The disturbance

produced by penetrator test number 3 (Figure V-9b) in terms of calculated

peak displacement at the gauge positions amounts to about 10 mm. Further

experiments are necessary to evaluate whether or not this magnitude dis-

turbance affects the measurements made on penetrator test number 4. It

is clear that penetrator tests numbers 1 and 2 produced relatively mucn

smaller disturbances at the gauges.

Shown in Figure V-16 are peak pressure arid radial stress data from

gauges in hole A plotted as a function of gauge depth. Also shown are

the calculated curves for peak pressure and radial stress. Except for

the datum from gauge A-8, all the data fall within a band bounded by the

calculated curves. Also, all data are closer to the predicted mean

stress curve than to the radial stress curve. The datum at 3.76 m from

the radial stress gauge (A-5l) appears to be essentially identical to the

pressure measurement from gauge A-7 suggesting that both gauges are

measuring the same quantity. Lithium niobate transducers for measure-

ment of total stress components are still under development. More wirk

is necessary to establish their capability in this mode. Mean itress9

gauges of lithium niobate, however, have received much more attention

and use2 and should be considered the more reliable transducer in examin-

ation of data from the penetration experiments.

Attenuation of peak pressure and peak radial stress with radialI

posiition from impact axis is illustrated in Fvigure V.-I'. Predicted

curves shown are for stress attenuation at a depth of 3.6 m and may be
compared with data at that depth (circle and triangles). It is seen

F6



'LAYER 1L0 4  LYR'~ 'LAYER 3

CALCULATED
0.6 PEAK RADIAL0

0.4

CACLAE
0.24

PEAK MEAN

0 MEAN STRESS
A RADIAL STRESS

0
0 2 14 6

DEPTH (in AT R -0. 45 m
Figure V-16

Predicted Peak Radial and Peak Mean Stress versus Depth at

Constant Radial Position R =0.145 Compared. with Measurements.

f-!;k
62



100o

CALCULATED PEAK
.4_\ / RADIAL STRESS •1

(Z. 3.6mW
CALCULATED PEAK

MEAN STRESS

cc (Z 3.6 m)

10a 0_i ._ _____ ,... I
oSTRESS GAUGE

SDATA GAUGETYPE DEPTH (m)
• RADIAL 3.6

MEAN 3.6

10-2l

iI I II
0.1 (meters) 1.0

l.--.-I i III I I
S2 3 4 5 6 8 10

(projectile diameters)

DISTANCE ROM IMPACT AXIS
Figure V-17

Predicted Peak Radial and Peak Mean Stress versus Distance from

Impact Axis at Constant Depth Z = 3.6 m Compared with Measurements.

63



that the 3.6 in data compare reasonably well with the predicted mean stress

* iattenuation curve and that peak stress amplitude falls off rapidly (faster
•' -2

than r2 ) with distance away from the projectile path axis.

hasIn general, it is felt that the soil stress measiurement technique

has been demonstrated and that the information obtained provides con- J1

-"fidence regarding validity of -the m•.arial property data. and material

Sresponse models uscri in calculations for layers 1, 2 and 3. The satisfac- I

tory agreememjt between measurement and calculation of st"ess pulse shape

and amplitude also verifies methods employed in the computational tech-

nique. Without the earth stress data much less credibility might have

been attached to results of computations. Penetration tests (numbers 2

and 4), which provided the earth stress history data were conducted with

projectiles of 127 kg mass and diameter 0.152 m rather than the 181 kg,

0.165 m diameter projectiles assumed in calculations. While another

calculation would be required for the slightly smaller projectile in

order to definitely establish differences, it is felt that stress history

results for the smaller projectile would be similar to those of the

larger projectile within the uncertainties that exist.

A
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SECTION VI

SUMMARY AND CONCLUSIONS

All phenomena connected with producing significant loads on the

projectile occur in a relatively small region of the target medium about

-the projectile nose. Shown in Figure VI-i are three-dimensional plots

of radial and vertical soil velocity as a function of depth in target

and distance from projectile path axis at a time when the projectile

nose is at 4.4 in depth (see also Figures A-122 and A-123). It is seen

that the region of greatest disturbance in the soil is small and confined

to the immediate vicinity of the nose. Figure VI-2a also illustrates

how rapidly the disturbance iu soil vanishes with distance from the
I projectile. With the projectile nose tip at 4.4 m, at a depth of 4.2 m

(0.2 m behind projectile nose) soil pressure is about 3 MTa (30 bars,

S450 ps. at a distance of slightly less than one projectile radius from

the projectile axis. At a distance 2.5 projectile diameters from the

axis, the soil pressure is down an order of magnitude to 0.3 MPa and at

5 projectile diameters another order of magnitude reduction is found.

L Figure VI-2b indicates in yet another way the highly isolated nature of

the projectile generated distur-bance in the soil. For the zones of the

computational mesh originally on the symmetry axis and later adjacent

to the penetrator, mean stress is plotted as a function of vertical

position relative to nose tip location. The pressure profile ahead of

and along the pro.ectilu surface is shown in Figure VI-2b for the penetra-

tor in layer 1 (nose tip at 2 m depth) and in layer 2 (4.4 m depth).

For materials similar to those of the Watching Hill target medium, it is
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seen that essentially- all of the disturbance produced in the soil occurs

within a cylindrical volume with radius equal to 3 projectile diameters.

For purposes of calculating loads on penetrators, radial extent of the

target need not be more than about 5 penetrator diameters in materials

like those of this calculation.

Figure VI-3 shows the path a soil particle follows in the stress

plane, T vs. p. The particle of Figure VI-: is identified by its

initial coordinates Z 3.6 in, R 0.15 m and so is located in layer 2

material at a distance less than one projectile diameter from the impact

axis. During loading the particle follows the path shown. On unloading

the particle finds itself very close to the failure envelope and follows

it to zero pressure. A close examination of the calculation reveals that I

the stress state for the particle should actually be at the intersection

4 of' the cap and the failure envelope: the fact that it does not quite
coincide with this point is a consequence of a slight "over-shrinking"

of the cap caused by the finite difference approximation used for the

constitutive equations. Figures VI-2b and VI-3 taken together indicate

that accurate modeling of the failure envelope and unloading behavior

for the material are important parts of the calculation. Similarly,

Figure VI-4 illustrates the path of the same soil particle in the strain

invariant plane, - vs. T], where 12 is the second moment of the strain

deviators and T] is volumetric strain. After unloading-, the particle

finds itself with a large deviatoric strain and at a density less than

its initial density. These paths experienced by soil particles as a

result of target penetration by projectiles are considerably different

from paths attained in conventional uniaxial strain and triaxial str 3

experiments. Strain energy density of a particle within the region of

14
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j.1soil highly disturbed by the projectile is of the ord~er of 0.1 to 0.5 MJ/.i;•,,:

m3 for the Watching Hill medium. Consequences of the d~ilatancy inherent ..

in the soil cap model, as indicated in Figure VI- 14, appear to be manifested

in two ways. These are lack of a definitive soil separation point on the

!• projectile and the size of the projectile-produced borehole. Results of

I!':', the rigid body calculation indicate that the diameter of the borehole is

• never greater than the projectile diameter and may in fact be less.

•:; Accurate determination of borehole diameter behind the projectile is not

possible owing to the continual rezoning to a coarser mesh in this region.

It is known, however, that soil rebound occurs and boreholes have been

observed2 wlhose final diameters are less than the projectile diameter.

Unfortunately, no attempt was made to measure borehole sizes for the

penetrator experiments at Watching Hill. The rigid body calculations

also suggest that the Watching Hill soil does not separate from the

., projectile but appears to remain attached throughout the entire length

•'i!'.Iof the projectile. This occurs even though the normal stress on the

ii projectile is significantly larger than zero only on the nose. (What

,.'•/"appears to be a soil separation position in Figures A-97, A-l06, A-!15,

A-12~4 and A-133 is interpreted, rather, to be a perturbation in the cal-

culation resulting from the transition from a region of fine to coarser

zoning). That soil separation or detachment from the projectile may niot

occur has been observed2 experimentally. Those experimental results,

however, cannot disti~nguish between soil detachment on the projectile

nose with later reattachment and complete lack of soil separation.

To investigate this point further, additional calculations should

be performed which include friction and a response model such as the

cap model which demonstrates dilatancy. As appears to be the case here

]• 72



in calculations with nio friction, dilatancy in the response model pre-

vents or retards soil detachment from the projectile surface. By the

inclusion of friction in such calculations even a small frictional stress,

ot acting over the large area of the projectile afterbody, could contribute

a large axial retarding force comparable to or possibly greater than

that contributed by the nose area of the projectile. Results from such

a calculation, when compared with projectile deceleration data, would

imply a smaller friction coefficient than one inferred from calculations

with response models having no dilatancy in which soil separation might

occur, for example, at the position on the projectile where the nose

meets the afterbody.

Figure VI-5 illustrates the partitioning of energy to the penetrated

medium at the expense of projectile kinetic energy. From the zero fric-

tion calculation, it is apparent that projectile kinetic energy losses

manifest themselves primarily in the form of plastic work done in defor-

mation of the penetrated medium. Energies associated with motion of the

soil and with recoverable elastic work are very small, each being on the

order of 1/10 or less of the plastic work (internal energy =plastic work+

elastic work). .
~j. The calculated deceleration history indicates that sudden changes

in the problem occur only when the nose region of the projectile is entering

a new layer of material. Also, Figure VT-5 shows that the dominant modeI

of the rate of energy transfer from projectile to soil is nearly constant

through a layer in which there is little velocity change. Moving pictures

made of numerous plots of normal stress distribution and three-dimensional

plots of pressure vs. axial and radial position, For examiple, confirm

that the process being calculated is primarily quasi-static, Thus, the
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large-scale wave propagation codes with a reasonable degree of economy

althughit may be necessary to perform multiple calculations in layers

that produce large velocity decreases. It also appears, however, that

detailed analysis of the results of this and similar calculations should

lead to the development of much less sophisticated methods which would

also yield necessary information for depth prediction and projectile design.I

During the deforinable projectile calculation, the maximum radial

displacement that was observed for the projectile surface was 30 P~m. '
Although this displacement was too sinall to alter the effectiv.u shape

of the vehicle, fluctuations in displacement were sufficient to produce

large charges in normal stress at the vehicle-soil interface, as shown

in Figures B-37 through B-39. Thus, the dominant effect of the rigid-

body approximation was to eliminate transient variations in the normal

stress.

The agreement in predicted soil histories between the two calcula-I

tions demonstrates that, for the particular material model used, these

transients are damped out less than 20 mm from the vehicle and do not

affect the predicted wave motion in the soil. However, the deformable

body calculation predicts a deceleration about forty percent larger than

that calculated for a rigid body. This comparison demnonstrates that

the deceleration is*determined by the soil response in regions much

made. The motion is similar to aerodynamic behavior, with the drag de-

termined by the response in a narrow region, or boundary layer.
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The differences between the results of the two calculations are

related to their description of this boundary layer. The inclusion of the

450 nose tip results in a stress increase of less than 5 MPa, effective over

rO-4 2
a cross-sectional area of about 4 x 10 m , accounting for a deceleration

difference of about 1 g. Of greater significance is the procedure for

obtaining the stress at the interface. In the calculations, stress his-

tories are recorded only at zone centers and, therefore, not at the

interface. For the rigid body calculation, the stress in the nearest

soil zone was used to determine the decelerating force, as discussed

in Section III. In the deformable body calculation, no interface stress

or force was explicitly obtained; the sliding interface procedure results

in an effective normal stress that is between the stress in the soil zone

and the (usually higher) stress in the nearest vehicle zone.

While many questions remain to be investigated, this first attempt

to predict projectile motion and target material response has been

highly successful and most encouraging. Given data describing properties

of each layer in the target medium, realistic soil response models were

constructed and utilized in the finite difference code computations.

Resulting predictions of projectile deceleration and of stress history

at several points in the soil generally agreed well with measurements,

lending credence to the method of analysis. Consequently greater con-

fidence may now be placed in prediction of nonmeasurable quantities,

such as normal stress distribution on projectile surface, which are

necessary for design of earth penetrating projectiles.
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List of Illustrations Appendix A

,,Figure A-i Projectile Deceleration vs Time.

Figure A-2 Projectile Velocity vs Time.

Figure A-3 Projectile Depth vs Time.

Figure A-4 Projectile Deceleration vs Depth.

Figure A-5 Projectile Velocity vs Depth.

Figure A-6 Projectile Kinetic Energy/Radian vs Time,

Figure A-7 Soil Kinetic Energy/Radian, Due to Radial Velocity, vs Time.

Figure A-8 Soil Kinetic Energy/Radian, Due to Axial Velocity, vs Time.

Figure A-9 Total Soil Kinetic Energy/Radian vs Time.

Figure A-10 Legend for Point History Plots from Rigid Projectile Calculation.

Figure A-li Radial Velocity (m/s) versus Time (s) for Particle at Point 3,

Z = 3.6 m, R = 0.15 m.

Figure A-12 Axial Velocity (m/s) versus Time (s) for Particle at Point 3,

Z 3.6 m, R 0.1.5 m.

Figure A-13 Radial Displacement (m) versus Time (s) for Particle at Point 3,

Z 3.6 m, R 0.15 m.

Figure A-14 Axial Displacement (m) versus Time (s) for Particle at Point 3, J

Z = 3.6 m, R 0.15 m.

Figure A-15 Pressure (Pa) versus Time (s) for Particle at Point 3, Z 3.6 m,

R = 0.15 m.

Figure A-16 Deviator Stress, J2, History (Pa) for Particle at Point 3, Z =

3.6 m, R = 0.15 in (Octahedral Shear Stress =V%/2 J2)).

Figure A-17 Radial Stress (Pa) History for Particle at Point 3, Z = 3.6 in,

R: 0.15 m.

Figure A-18 Axial Stress (Pa) History for Particle at Point 3, Z = 3.6 m,

R i0.15 m.
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Figure A-19 Radial Velocity (m/s) versus Time (s) for Particle at Point 4,

Z 0.4 'n, R 0.15 m.

Figure A-20 Axial Velocity (m/s) versus Time (s) for Particle at Point 4,

z 0.4 m, R 0.15 m.

Figure A-21 Radial Displacement. (m) versus Time (s) for Particle at Point 4,

Z = 0.4 m, R = 0.15 in.

Figure A-22 Axial Displacement (in) versus Time (s) for Particle at Point 4.,

Z 0.4 ni, F 0.15 m.

Figure A-23 Pressure (Pa) versus Time (s) for Particle at Point 4, z 0.4 in,

R 0.15 m.

Figure A-24 Deviator Stress, J2, History (Pa) for Particle at Point 4,

Z 0.4 m, R 0.15 m (Octahedral Shear Stress =V,/3(J2)).

Figure A-25 Radial Velocity (m/s) versus Time (s) for Particle at Point 5,

Z = 0.1 m, R = 0.15 ni.

Figure A-26 Axial Velocity (m/s) versus Time (s) for Particle at Point 5,

Z 0.1 m, R 0.15 m.

Figure A-27 Radial Displacement (m) versus Time (s) for Particle at Point 5,

Z = 0.1 m, R = 0.15 m.

Figu.re A-28 Axial Displacement (in) versus Time (s) for Particle at Point 5,

Z 0 0.1 m, R = 0.15 m. I

Figure A-29 Pressure (Pa) versus Time (s) for Particle at Point 5, Z 0.1 Mi,

R= 0.15 in.

Figure A-30 Deviator Stress, J2, History (Pa) for Particle at Point 5,

Z = 0.1 m, R = 0.15 m (Octahedral Shear Stress =V2/3(J2)'Y.

Figure A-31 Radial Velocity (m/s) versus rTime (s) for Particle at Point 7,

Z 5.4 m, R o.45 m.
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Figure A-32 Axial Velocity (m/s) versus Time (s) for Particle at Point 7,

z 5.4 m, R 0.45 m.

Figure A-33 Radial Displacement (m) versus Time (s) for Particle at Point 7,

Z = 5.4 m, R 0.45 m.

Figure A-34 Axial Displacement (m) versus Time (s) for Particle at Point 7,

Z 5.4 m, R 0.45 m.

- Figure A-35 Pressure (Pa) versus Time (s) for Particle at Point 7, Z = 5,11. in,

,• o = 0.4-5 m.

Figure A-36 Deviator Stress, J2, History (Pa) for Particle at Point 7,

:.Z =5.4 m, h o .45 m (octahedral Shear Stress =v72-/(J2)) .

Figure A-37 Radial Stress (Pa) History for Particle at Point 7, Z 5.4 m,
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Figure A-38 Radial Velocity (m/s) versus Time (s) for Particle at Point 8,

Z 3.6 m, R = 0.45 m.

Figure A-39 Axial Velocity (m/s) versus Time (s) for Particle at Point 8,

Z 3.6 m, R 0.45 m.

Figure A-40 Radial Displacement (m) versus Time (s) for Particle at Point 8.,

Z = 3.6 m, R = o.45 m.

Figure A-41 Axial Displacement (m) versus Time (s) for Particle at Point 8,

Z =3.6 m, R =0.45 m.

Figure A-42 Pressure (Pa) versus Time (s) for Particle at Point 8, Z = 3.6 m,

R = 0.45 m.

Figure A-43 Deviator Stress, J2, Hiistory (Pa) for Particle at Point 8,

Z 3.6 m, R =0.4 5 m (Octahedral Shear Stress =V*7Y(J2)).

Figure A-44 Radial Stress (Pa) History for Particle at Point 8, Z 3.6 in,

R = 0.45 in.
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Figure A-45 Axial Stress (Pa) History for Particle at Point 8, Z = 3.6 i,

i! ~R =- 0.45 m.
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Figure A-46 Radial Velocity (m/s) versus Time (s) for Particle at Point 9,

Z = 1.8 in, R 0.45 m.

Figure A-4-7 Axial Velocity (/s) versus Time (s) for Particle at Point 9,

Z 1.8 m, R 0.4.5 m.

Figure A-48 Radial Displacement (in) versus Time (s) for Particle at Point 9,

Z = 1.8 in, R 0.45 m.
Fi"gure A-49 Axial Displacement (mn) versus Time (s) for Particle at Point 9,

@'Z =1.8 in, R =0.45 mn.

Figure A-50 Pressure (Pa) versus Time (s) for Particle at Point 9, Z = 1.8 m,

R = .4.5 n.

Figure A-51 Deviator Stress, J2, History (Pa) for Particle at Point 9,

Z 1.8 m, R = 0.45 m (Octahedral Shear Stress =•v-23J2)).

Figure A-52 Radial Stress (Pa) History for Particle at Point 9, Z 1.8 m,

R= 0.45 In.

Figure A-53 Radial Velocity (m/s) versus Time (s) for Particle at Point 10,

Z 0.4 in, R 0.45 m.

Figure A-54 Axial Velocitý (m/s) versus Time (s) for Particle at Point 10,

Z 0.4 m, R 0.45 m.

Figure A-55 Radial Displacement (in) versus Time (s) for Particle at Point 10,

Z = 0.4. in, R 0.45 m.

FFigure A-56 Axial Displacement (in) versus Time (s) for Particle at Point 10,

Z =0.4 mn, R =0.415 m.

Figure A-57 Pressure (Pa) versus Time (s) for Particle at Point 10,

z = 0.4 m, R = 0.45 m.
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Figure A-58 Deviator Stress, J2, History (Pa) for Particle at Poin- S

o.4 m, R o.45 m (octahedral Shear Stress =v.2/3(J2)).

Figure A-59 Radial Velocity (m/s) versus Time (s) for Particle at Point 11,

Z 0.1 m, R o.45 m.

Figure A-60 Axial Velocity (m/s) versus Time (s) for Particle at Point 11,
A

Z = 0.1 m, R = 0.45 m.

Figure A-61 Radial Displacement (in) versus Time (s) for Particle at Point 11,

Z 0.1 In, R = 0.45 m.

Figure A-62 Axial Displacement (in) versus Time (s) for Particle at Point 11,

Z 0.1 m, R 0.45 in.

Figure A-63 Pressure (Pa) versus Time (s) for Particle at Point 11, Z

O.. m, R 0.45 m.

Figure A-64 Deviator Stress, J2, History (Pa) for Particle at Point 11, Z:2

F.1 m, R u0.45 m (octahedral Shear Stress =-/97/(J2)).

Figure A-65 Radial Velocity (m/s) versus Time (s) for Particle at Point 12,

Z = 3.6 m, R = 0.9 m.

Figure A-66 Axial Velocity (m/s) versus Time (s) for Particle at Point 12,

Z = 3.6 mn, R = 0.9 in.

Figure A-67 Radial Displacement (in) versus Time (s) for Particle at Point 12,

Z = 3.6 m, R = 0.9 m.

Figure A-68 Axial Displacement (m) versus Time (s) for Particle at Point 12,

Z = 3.6 m, R = 0.9 rn.

Figure A-69 Pressure (Pa) versus Time (s) for Particle at Point 12, Z

3.6 mn• R -- 0.9 m.q

Figure A-70 Deviator Stress, J2, History (Pa) foo Particle at Fcint 12, Z

3.6 m, R 0.9 in (Octahedral Shear Stress =v -/3(J2)).
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Figure A-71 Radiaa Stress (Pa) History for Particle at Point 12, Z = 3.6 m,

R = 0.9 m.

Figure A-72 Axial Stress (Pa) History Fr Particle at Point 12, Z 3.6 m,

R 0.9 m.

Figure A-73 Pressure (Pa) versus Time (s) for Particle at Point 13,

Z 5.4 m, R = 1.5 m.

Figure A-74 Radial Stress (Pa) History for Particle at Point 13, Z = 5.4 m,

SR= 1.5 m.

Figure A-75 Pressure (Pa) versus Time (s) for Particle at Point 14, Z 3.6 m,

R = 1.5 m.

Figure A-76 Radial Stress (Pa) History for Particle at Point 14, Z 3.6 m,

R 1.5 m.

Figure A-77 Pressure (Pa) versus Time (s) for Particle at Point 15, Z 1.8 m,

R= 1.5 m.

Figure A-78 Radial Stress (Pa) History for Particle at Point 15, Z = 1.8 m,

R = 1.5 m.

.Figure A-79 Lagrangian coordinates when projectile has penetrated to depth

of 0.1 M.

Figure A-80 Normal stress (Pa) along surface of projectile when projectile

is at 0.1 m depth.

Figure A-81 Tangential stress (Pa) along surface of projectile when projectile

is at 0.1 m depth.

Figure A-82 Contours of Axial Stress in Target. Projectile at 0.1 in Depth.

Figure A-83 Contours of Radial Stress in Target. Projectile at 0.1 m Depth.

Figure A-84 Contours of Hoop Stress in Target. Pijectile at 0.1. m Depth.

ii ,

I



. . .- o' ..- , ,-r . ,,

Figure A-85 Contours of Radial-Vertical Shear Stress in Target. Projectile

at 0.1 m Depth

Figure A-86 Contours of Vertical Velocity in Target. Projectile at 0.1 m Depth.

Figure A-87 Contours of Radial Velocity in Target. Projectile at 0.1 m Depth.

Figure A-88 Lagrangian Coordinates When Projectile has Penetrated to Depth

of 0.4 m.

Figure A-89 Normal Stress (Pa) Along Surface of Projectile When Projectile

•.. is at 0.4 in Depth.
"Figure A-90 Tangential Stress (Pa) Along Surface of Projectile When Projectile

is at 0.4 m Depth.

Figure A-91 Contours of Axial Stress in Target. Projectile at 0.4 m Depth.

Figure A-92 Contours of Radial Stress in Target. Projectile at 0.4 m Depth.

Figure A-93 Contours of Hloop Stesss in Target. Projectile at 0.4 m Depth.

Figure A-94 Contours of Radial-Vertical. Shear Stress in Target. Projectile

at 0.4 in Depth.

Figure A-95 Contours of Vertical Velocity in Target. Projectile at 0.4 m Depth.

Figure A-96 Contours of Radial Velocity in Target. Projectile at 0.4 m Depth.

Figure A-97 Lagrangian Coordinates When Projectile has Penetrated to Depth of

2.0 m. Radial Dimensions Doubled for Clariby.

Figure A-98 Normal Stress (Pa) along Surface of Projectile When Projectile

is at 2.0 m Depth.

Figure A-99 Tangential Stress (Pa) Along Surface of Projectile When Projectile

is at 2.0 m Depth.

Figure A-100 Contours of Axial Stress in Target. Projectile at 2.0 m Depth.

Figure A-10 Contours of Radial Stress in Target. Projectile at 2.0 m Depth.

Figure A-102 Contours of Hoop Stress in Target. Projectile at 2.0 m Depth.
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Figure A-l03 Contours of Radial Vertical Shear Stress in Target. Projectile

at 2.0 ra Depth.

Figure A-104 Contours of Vertical Velocity in Target. Projectile at 2.0 in Depth.

Figure A-105 Contours of Radial Velocity in Target. Projectile at 2.0 in Depth.

Figure A-IC, Lagrangian Coordinates When Projectile has Penetrated to Depth

of 2.8 m. Radial Dimensions Doubled for Clarity.

Figure A-107 Normal Stress (Pa) Along Surface of Projectile When Projectile

is at 2.8 in Depth.

Figure A-108 Tangential Stress (Pa) Along Surface of Projectile when Projectile

is t 2.8 mn Depth.

Figure A-109 jontours of Axial Stress in Target. Projectile at 2.8 m Depth.

Figure A-l]-0 Contours of Radial Stress in Target. Projectile at 2.8 in Depth,

Figure A-1ll Contours of Hoop Stress in Target. Projectile at 2.8 m Depth.

Figure A-112 Contours of Radial Vertical Shear Stress in Target. Projectile

at 2.8 m Depth.

Figure A-113 Contours of Vertical Velocity in Target. Projectile at 2.8 m Depth.

Figure A-114 Contours of Radial Velocity in Target. Projectile at 2.8 m Depth.

Figure A-115 Lagrangian Coordinates When Projectile has Penetrated to Depth of

4.4 in. Radial Dimensions Doubled for Clarity.

Figure A-116 Normal Stress (Pa) Along Surface of Projectile When Projectile

is at 4.4 m Depth.

Figure A-117 Tangential Stress (Pa) Along Surface of Projectile When Projectile
is at 4.4 m Depth.

Figure A-118 Contours of Axial Stress in Target. Projectile at 4.4 in Depth.

Figure A-119 Contours of Radial Stress in Target. Projectile at 4.4 in Depth.

Figure A-120 Contours of Hoop Stress in Target. Projectile at 4.4 in Depth.
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Figure A-121 Contours of Radial-Vertical Shear Stress in Target. Projectile

at 4.4 in Depth.

Figure A-122 Contours of Vertical Velocity in Target. Projectile at 4.4 m Depth.

Figure A-123 Contours of Radial Velocity in Target. Projectile at 4.4 m Depth.

Figure A-124 Lagrangian Coordinates When Projectile has Penetrated to Depth

of 5.2 m. Radial Dimensions Doubled for Clarity.

Figure A-125 Normal Stress (Pa) Along Surface of Projectile When Projectile

is at 5.2 m Depth.

Figure A-126 Tangential Stress (Pa) Along Surface of Projectile When Projectile

is at 5.2 m Depth.

Figure A-127 Contours of Axial Stress in Target. Projectile at 5.2 m Depth.

Figure A-128 Contours of Radial Stress in Target. Projectile at 5.2 in Depth.

Figure A-129 Contours of Hoop Stress in Target. Projectile at 5,2 m Depth.

Figure A-130 Contours of Radial-Vertical Shear Stress in Target. Projectile

at 5.2 m Depth.

Figure A-131 Contours of Vertical Velocity in Target. Projectile at 5.2 m Depth.

Figure A-132 Contours of Radial Velocity in Target. Projectile at 5.2 in Depth.

Figure A-133 Lagrangian Coordinates When Projectile has Penetrated to Depth

of 6.8 in. Radial Dimensions Doubled for Clarity.

Figure A-134 Normal Stress (Pa) Along Surface cf Projectile When Projectile

is at 6.8 m Depth.

Figure A-135 Tangential Stress (Pa) Along Surface of Projectile when Projectile

is at 6.8 in Depth.

Figure A-136 Contours of Axial Stress in Target. Projectile at 6.8 in Depth.

Figure A-137 Contours of Radial Stress in Target. Projectile at 6.8 m Depth.

Figure A-138 Contours of HWup Stress in Target. Projectile at 6.8 in Depth.



Figure A-139 Contours of Radial-Vertical Shear Stress in Target. Projectile

at 6.8 in Depth. I

Figure A-140 Contours of Vertical Velocity in TLrget. Projectile at 6.8 m Depth.

Figure A-141 Contours of Radial Velocity in Target. Projectile at 6.8 m Depth.
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TABLE A-1

TABLE OF HISTORY PLOTS

H-

, X Z i UX UZ DX 'pZ p J 2 TXX TZZ

4 0.15 o,.4 J'-19 A-20 A-21 A-22 A-23 A-24

5 0. 15 0. 1 A-25 A-26 A-27 A-28 A-29 A-30

'- -4)4 I .. .

S7 o0.45 5.4 A-31 A-32 A-33 A-34 A-35 A-36 A-37

8 o,45 3.6 A-38 A.-39 A-40 A-41 A-42 A-43 A-44 A-4•5

9 0.45 1.8 A-46 A-47 A-48 A-49 A-50 A-51 A-52

10 o.45 o.4 A-53 A-54 A-55 A-56 A-57 A-58

1l o. 45 0. 1 A -59 A-60 A-61 A-62 A-63 A-64

12 O. 9 3. 6 A-65 A-66 A-67 A-68 A-69 A-70 A -71 A-7T2

13 1.5 5.4 A-73 A -74

14 1.5 3.6 A-75 A-76

5 1. .8 - AI 7

0I,1.5 3.8 -) -2 -3 A.1 A-77 A-1 A-178 A1
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Projectile Deceleration. vs. Depth.
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Prsue(Pa) versus Time (s) f'or Particle at Point 3, Z 3.6 m, R 0.15 m.
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Radial Velocity (rn/s) versus Time (s) for Particle at Point 4,
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Radial Stress (Pa) History for Particle at Point 7, Z -5.4 mn, R 0.45 Mn.
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Pressure (Pa) versus Time (s) for Particle at Point 15, Z 1.8 is, R =1.5 ms.

170

4.1.



K *~~wORES RIGID PROJECTILE CALCULATION

04

1.46606

1.30910 a

AkA

POINT 15 TIME

Firure A-78
Radiai Stress (Pa) History f'or Pa,.'ticle at Point 15, Z 1.8 mR 1.5 M.

171



i O 61 11It*i''C 4 - ( Ad C~ WW 1ic Vs a

.66 insec

Figure A-79
Lagrangian Coordinates When Projectile Has Penetrated to Depth of 0.1. m.

1.72



-17



Tangntia Stes (Pa Aln Sufc ofPoecieWhnPojcie sa .1 mDph

C,17 r A,



-0.1 $~

Figur ..- 8

Contursof ~xia Stessin~rvt- Proectle acO, m~e-th

0.Mk



-1.5 MPa
)2 .0 MPa

t t

-0.5 MPa )

$ t

3i

4 ~, I

Figure A-83

Contours of Radial Stress in Target. Projectile at 0.1 ,1 Depth.
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Contou~rs of Hoop Stress in Tgrget. Projectile at 0.1 m Depth
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Figure A-85

Contours of Radial-Vertical Shear Stress in Target. Prol-ectile at 0.1 m Depth.
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Contoiurs of' Vertical VelocitY in Target. Projectile at 0.1 m Depth.

179

-T____________



I'

!4

n6.o m/s

12.0 m/s

.18.0 r.i/s

24.0 rn /s

Figure A-87

Contours of R~adial Velocity in Target. Projeotile at 0.1 m Depth.
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Normal Stress (Pa) Along Surface of Projectile When Projectile is at 2.0 m Depth.
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Figure A-100

Contours of Axial Stress in Target. Projectile at 2.0 m Depth.
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Figure A-101

Contours of_ _edial Stress in Target. Projectile at 2.0 m Depth.

isý4
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Figure A-102

Contours of' Hoop Stress. in Target. Projectile at 2.0 m Depth.
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Figure A-0

IContours of Radial Vertical Shear Stress in Target. Projectile at 2.0 m Deptii.
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Figure A-104
Contours of' Vertical Velocity in Target. Projectile at 2.0 mn Depth.
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Figure A-io6

Lagrangian Coordinates When Proj ectile has Penetrated to Dejx~h of 2.8 a. Rad~ial

Dicncfsiofls Doubled orClarity.
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Figure A-107

Normal Stress (Pa) Along Surface of Projectile When Projectile is at 2.8 m Depth.
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STangential Stress (Pa) Along Surface of Projectile When Projectile is at 2.8 m Depth.
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Figure A-109 l
Contours of Axial. Stress in Target. Projectile at 2.8 m Depth.
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FAlqure A-113
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Contours of' Hoop Stress in Target. Projectile at 4.4 in Depth.
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Figure A-126

Tangential Stress (Pa) Along Surface of Projectile When Projectile 
is at 5.2 m Depth.
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Figure A-129

Contours of Hoop Stress in Target. Pro~jectile at 5.2 m Depth.
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Figure A-130

Contours of Radial -Vertical Shear Stress In Target. Projectile at 5.2 m Depth.
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Figure A-131A

Contours of Vertical Velocity in Target. Projectile at 5.2 in Depth.
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Contours of' Radial Velocity in Target.lProjectile at 5.2 m Depth.
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Norml Sres (Pa Alng urfce o PrjecileWhenProectle s at6.8m Dpth
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Tangential Stress (Pa) Along Surface of Projectile When Pr-ojectile is at 6.8 in Depth.
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Figure A-3-38

Contours of Hoop Stress in Target. Pro~jectilc at 6.8 m Depth.
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Figulre A-139

Contours of Radial-Vertical She~r Stress in Target. Projectile at 6.8 m Depth.
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Figure A-140
Contours of' Vertical Velocity in Target. Projectile at 6.8 mn Depth.
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Figure A-141

Contours of Radial Velocity in Target, Projectile at 6.8 m Depth.
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List of Illuistrations Appendix B

B-I. Lagrgngian Coordinates at 0.4 ms (Radial Dimensions Doubled to Show

Deformable Penetrator).

':B-2. Contours of Radial Velocity at 0.4 ms (Def( :mable Penetrator riot Shown) .

:B-3. Contours of Vertical Velocity at 0.4 ms (Deformable Penetrator not

Shown).

B-4. Contours of Radial Stress at 0.4 ms (Deformable Penetrator not Shown).

B-5. Contours of Hoop Stress at 0.4 ms (Deformable Penetrator not Shown).

B-6. Contours of Vertical Stress at 0.4 ms (Deformable Penetrator not

Shown).

B-7. Contours of Radial-Vertical Shear Stress at 0.4 ms (Deformable

Penetrator not Shown).

B-8. Lagrangian Coordinates at 1.1 ms (Radial Dimensions Doubled to Show

Deformable Penetrator).

B-9. Contours of Radial Velocity at 1.1 ms (Deformable Penetrator not

Shown).

B-10. Contours of Vertical Velocity at 1.1 ms (Deformable Penetrator not

Shown).

B-11. Contours of Radial Stress at 1.1 ms (Deformable Penetrator not Shown).

B-12. Contours of Hoop Stress at 1.1 ms (Deformable Penetrator not Shown).

B-13. Contours of Vertical Stress at 1.1 ms (Deformable Penetrator not

Shown).

B-14. Contours of Radial-Vertical Sh'ear Stress at 1.1 ms (Deformable Pen-

etrator not Shown).

B-15. Lagrangian Coordinates at 2.4 ms (Radial Dimensions Doubled to Show

Deformable Penetrator).
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B..16. Contours of Radial Velocity at 2.4 ms (Deformable Penetrator not

shown).

K 1B-17. Contours of Vertical Velocity at 2.4 ms (Deformeble Penetrator not

Shown).

B-18. Contours of Radial Stress at 2.4 ms (Deformable Penetrator not Shown).

B-19. Contours of Hoop Stress at 2.4 ms (Deformable Penetrator not Shown).

B-20. Contours of Vertical Stress at 2.4 ms (Deformable Penetrator not

Shown).

B-21. Contours of Radial-Vertical Shear Stress at 2.4 ms (Deformable Pene-.

trator not Shown).

B-22. Deceleration History (g) for Point I at Accelerometer (Filtered Above

10 MH).

B-23. Vertical Velocity History (m/s) for Point I at Accelerometer.

B-24. Vertical Displacepmit History (m) for Point 1 at Accelerometer.

B-25. Deceleration Higtbory (g) for Point 2,0.58 m Behind Penetrator Tip and

10 mm from Central Axis.

B-26. Vertical Velocity History (m/s) for Point 2, 0.58 m Behind Penetrator

Tip and 10 mm from Central Axis.

B-27. Vertical Displacement History (m) for Point 2,0.58 m Behind Penetrator

Tip and 10 mm from Central Axis.

B-28. Deceleration History (g) for Point 5,28 mm Behind Penetrator Tip and

6 mm from Central Axis.

B-29. Vertical Velocity History (m/s) for Point 5,28 mm Behind Penetrator

Tip and 6 mm from Central Axis.

B-30. Vertical Displacement History (m) for Point 5, 28 mm Behind Penetrator

Tip and 6 mm from Central Axis.
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B-31. Pressure History (Pa) for Point 3, 0.79 m Behind Penetrator Tip and

69 mm from Central Axis.

1B-32. Deviator Stress, J2, History (Pa) for Point 3, 0.79 m Behind Penetrator

Tip and 69 mm from Central Axis (Octahedral Shear Stress 42/30-2))

B-33. Pressure Hývtory (Pa) for Point 4, 1.39 in Behind Penetrator Tip and

69 mm from Central Axis.

B-34. Deviator Stress, J2, History (Pa) for Point 4, 1.39 in Behind Penetrator

Tip and 69 mm from Central Axis (Octahedral Shear Stress =0(J2)).

1B-35. Pressure History (Pa) for Point 6, 48 mu Behind Penetrator Tip and 17

mm from Central Axis.

3B-36. Deviator Stress, J2, History (Pa) for Point 6, 48 mm Behind Penetrator

Tip and 17 mm from Central Axis (Octahedral Shear Stress =•23J2)).

B-37. Normal Stress History (Pa) for Point 7, 0.14 in Behind Penetrato!' Tip

and 41 mm from Central Axis.

B-38. Normal Stress History (Pa) for Point 8, 0.23 in Behind Penetrator Tip

and 60 mm from Central Axis.

B-39. Normal Stress History (Pa) for Point 9, 0.38 in Behind Penetrator Tip

and 77 mm from Central Axis.

B-40. Soil Kinetic Energy 1 Radian vs. Time (Deformable Penetrator).

B-41. Radial Velocity History (ni/s) in Soil at Range 75 mm, Depth 0.1 m

(Deforimable Penetrator).

B-42. Vertical Velocity History (m/s) in Soil at Range 75 nu, Depth 0.1 in

(Deformable Penetrator).

B-43. Radial Displacement History (in) in Soil at Range 75 mm, Depth 0.1i m

(Deformable Penetrator).

B-44. Vertical Displacement History (in) in Soil at Range 75 ni, Depth 0.1 m

Deformable Penetrator).
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B-45. Pressure History (Pa) in Soil at Range 75 mm, Depth 0.1 m (Deformable

Penetrator).

B-4 6 . Deviator Stress, J2, History (Pa) in Soil at Range 75 mm, Depth 0.1 m

(Deformable Penetrator), (Octahedral Shear Stress = 2/3(J2)).

B-47. Radial Velocity History (m/s) in Soil at Range 75 mm, Depth 0.2 m

(Deformable Penetrator).

B-48. Vertical Velocity History (m/s) in Soil at Range 75 mm, Depth 0.2 m

(Deformable penetrator).

B-49. Radial Displacement History (m) in Soil at Range 75 mm, Depth 0.2 m

(Deformable Penetrator).

B-50. Vertical Displscemert History (m) in Soil at Range 75 mm, Depth 0.2 m'

(Defor•iable penetrator).

B-51. Pressure History (Pa) in Soil at Range 75 mm, Depth 0.2 m (Deformable

Penetrator).

B-52. Deviator Stress, J2, History (Pa) in Soil at Range 75 mM, Depth 0.2 m

(Deformable Penetrator).

B-53. Radial Velocity History (m/s) in Soil at Range 75 m, Depth. 0.4 m

(Deformable Penetrator).

B-54. Vertical Velocity History (m/s) in Soil at Range 75 aim, Depth 0.4 m

(Deformable Penetrator).

B-55. Radial Displacement History (m) in Soil at Range 75 mm, Depth 0.4 m

(Deformable Penetrator).

B-56. Vrtical Displacement History (M) in Soil at Range 75 im, Depth 0.4 mn

(Deformable Penetrator).

B-57. P.. esaure History (Pa) in Soil at Range 75 mm, Depth 0.4 m (Deformable

Penetrator).

239



B-58. Deviator Stress, J2, History (Pa) in Soil at Range 75 nun, Depth 0.4 m

(Defrrmnable Penetrator).

B-59. Radial Velocity History (m/s) in Soil at Range 0.14 m, De•pth 0.1 ia

(Deformable Penetrator).

B-60. Vertical Velocity History (m/s) in Soil at Range 0.14 m, Depth 0.1 m

(Deformable Penetrator).

B-61. Radial Displacement History (m) in Soil at Range 0.14 m, Depth 0.1 m
(Deformable Penetrator).

B-62. Vertical Displacement History (m) in Soil at Range 0.14 m, Depth 0.1 m

(Deformable Penetrator).

B-63. Pressure History (Pa) in Soil at Range 0.14 in, Depth 0.1 m (Deformable

Penetrator).

B-64. Deviator Stress, J2, History (Pa) in Soil at Range 0.14 m, Depth 0.1 in

(Deformable Penetrator).

B-65. Radial Velocity History (m/s) in Soil at Range 0.14 m, Depth 0.2 m

(Deformable Penetrator).

B-66. Vertical Velocity History (m/s) in Soil at Range 0.14 m, Depth 0.2 m

(De'ormable Ilenetrator).
B-67. Radial Displacement History (m) in Soil at Range 0.14 m, Depth 0.2 m

(Deformable Penetrator).

B-68. Vertical Displacement History (m) in Soil at Range 0.14 m, Depth 0.2 m

(Deformable Penetrator).

B-69. Pressure History (Pa) in Soil at Range 0.14 m, Depth 0.2 m (Deformable

Penetrator).

B-70. Deviator Stress, J2, History (Pa) in Soil at Range 0.14 m, Depth 0.2 m

(Deformable Penetrator).
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3B-71. Radial Velocity History (m/s) in Soil at Range 0.14 m, Depth 0.4 m

(Deformab] e Penetrator).

B-72. Vertical Velocity History (m/s) in Soil at Range 0.14 m, Depth 0.4 m

(Deformable Penetrator).

1B-73. Radial Displacement History (ra) in Soil at Range 0.14 m, Depth 0.4 m
i• ... i .... Deformable Penetrator).

1B-74. Vertical Displacement. History (m) in Soil at Range 0.14 m, Depth 0.4 m

i (Deformable Penetrator).

k(B-75. PDessfre History (Pa) in Soil at Range 0.14 m, Depth 0.4 m (Deformable

Penetrator).

B-76. Deviator Stress, J2, History (Pa) in Soil at Range 0.14 m, Depth

0.4 m (Defornable Penetrator).

B-77. Radial Velocity History (m/s) in Soil at Range 0.28 m, Depth 0.1 m

(Deformable Penetrator).

B-78. Vertical Velocity History (m/s) in Soil at Range 0.28 mi, Depth 0.1. m

(Deformable Penetrator).

B-79. Radial Displacement History (in) in Soil at Range 0.28 m, Depth 0.1 m

(Deformable Pen-trator).

B-80. Vertical Displacement History (W) in soil at Range 0.ý?8 m, Depth

0.1 in (Deformable Penetrator).

B-81. Pressure History (Pa) in Soil at Range 0.28 i, Depth 0.1 m (Deformable

Penetrator) .

B-82. Deviator Stress, J2, History (Pa) in Soil at Range 0.28 m, Depth

0.1 m (Deformable Penetrator).

B-83. Radial Velocity History (m/s) in Soil at Range 0.28 m, Depth 0.2 m

(Deformable Penetrator).
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B-84. Vertical Velocity History (m/s) in Soil at Range 0.28 m, Depth

0.2 in (Deformable Penetrator).

B-85. Radial Displacement History (in) in Soil at Range 0.28 in, Depth 0.2 in

(Deformable Penetrator).

B-86. Vertical Displacement History (in) in Soil at Range 0.28 mn, Depth 0.2 in

(Deformable Penetrator) .

B-87. Pressure History (Pa) in Soil at Range 0.28 in, Depth 0.2 in (Deformable
•, ~~Penetrator) . :

B-88. Deviator Stress, J2, History (Pa) in Soil at Range 0.28 in,, Depth

0.2 in (Deformable Fenetrator).

B-89. Radial Velocity History (m/s) in Soil at Range 0.28 m, Depth 0.4 mn

(Deformable Penetrator).

B-90. Vertical Velocity History (m/s) in Soil at Range 2.28 m, Depth 0.4 in

(Deformable Penetrator).

B-1. Radial Displacement History (in) in Soil at Range 0.28 in, Depth 0.4 in

(Deformable Penetrator).

B-92. Vertical Displacement History (in) In Soil at Range 0.28 in, Depth 0.4 in

(Deformable Penetrator).

B-93. Pressure History (Pa) in Soil at Range 0.28 111, Depth 0.4 in (Deformable

Penetrator).

B-94. Deviator Stress, J2, History (Pa) in Soil at Range 0.28 in, Depth

0.4 in (Deformable Penctrator).

B-95. Radial Velocity History (m/s) in Soil at Range 0.44 in, Depth 0.1 in

(Deformable Penetrator).

B-96. Vertical Velocity History (m/s) in Soil at Range 0.44 in, Depth 0.1 in

(Deformable Penetrator).
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B-97. Radi-nl. Displacement History (in) in S-il at Range 0.44 m, Depth 0.1 in

(Deformable Penetrator).

B-98. Vertical Displacement History (m) in Soil at Range 0.44 in, Depth F

0.1 in (Deforniable Penetrator).

B-99. Pressure History (Pa) in Soil at Range 0.44 n, Depth 0.1 in (Deformable .

Penetrator).

.B-100. Deviator Stress, J2, History (Pa) in Soil at Range 0.44 in, Depth

0.1 in (Defornable Penetrator).

1B-301. Radial Velocity History (m/s) in Soil at Range 0.114 in, Depth 0.2 in I

(Deformable Penetrator).

B-102. Vertical Velocity History (m/s) in Soil at Range 0.44 in, Depth 0.2 in

(Deformable Penetrator).

B-103. Radial Displacement History (in) in Soil at Range 0.44 m, Depth 0.2 in

(Deformable Penetrator).

B-104. Vertical Displacement History (in) in Soil at Range 0.44 in, Depth

0.2 in (Deformable Penetrator).

B-105. Pressure History (Pa) in Soil at Range 0.44 in, Depth 0.2 in (Deformable

Penetrator).

B-106. Deviator Stress, J2, History (Pa) in Soil at Range 0.44 in, Depth

0.1 in (Deformnable Penetrator).

B-107. Radial Velocity History (m/s) in Soil at Range 0.44 in, Depth 0.4 mn

(Deformable Penetrator).

B-108. Vertical Velocity History (m/s) in Soil at Range 0.44 m, Depth 0.4 mi

(Deformable Penetrator).

B-109. Radial Displacement History (in) in Soil at Range 0.44 mm, Depth 0.4 in

(Deformable Penetrator).
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B-110. Vertical Displacement History (m) in Soil at Range 0.44 in, Depth O.4 in

(Deformable Penetrator). I
B-Il.. Praessure History (Pa) in Soil at Range 0.144 in, Depth u.4 in (Deforinable

Penetrator).

B-12. Devlntor Stress, J2, History (Pa) in Soil at Range 0.44 mn, Jepth 1

0.4 m (Deformable Penetrator), (Octahedral Shea: Stress :v//(J2)).
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Figure B-I

Lagrangian coordinates at 0.4 ms (radial dimensions doubled to show deformable
pe net rat or ).
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18 M/I

Figure B-2

Contouro of radial velOoitY at 0.~4 ms (deformable penetrator not shown).
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Figure B-4
Contours of radial stress at 0.4 as (deformabie penetrator not shown),
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Figure B-
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rigure B-6

Contours of vertLc.1 stress at 0.4 ms (deformable penetrator not shown).
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Figure B-7

Contours of radial-vertical shear stress at 0.4 ms (deformable penutrator now shown).
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Figure B-9

Contours of radial velocity at 1.1 msi (deformabJ.~ penetrator now showni).
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Figure B-10

Contours of vertical velocity at 1.1 ms (deformable perietrator not shown).
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Cotuso/allsrssa - s(eomtý penetra4 ,.or not Shown).
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Figure B-12

Contours of hoop stress at 1.1 ms (deformable penetrator not showvn).

256



4, I

"ii

-0.1 14Pa

Figure B-13 N
Contours of vertical stress t•t 1.1 ms (deformable penetrator not shown).
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F.'gure B-1)4

Contours of radial-vertical shear stress at 1.1 ms (de.fornable penetrator not

shown).
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Figure B-15

Lagrangian coordInates at 2.4 ms (radial dimensions doubied. to show defformable

~iI penetratrn).
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18 rn/S

30 rn/S

Figure B-16 I

Contours of radial. velocity at 2.4 mns (d~eforrnable penetrator not shown).
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Figure B-17
Contours of vertical velocity at 2.4 ms (deformable penetrator not shown).
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Figure B- 18

contours of ra d.ia l- stres s at 2 .*4 m s (d formab l.e penetrator not shown). 
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Figure B-19

Contours of hoop stress at 2.4, ma (deformable penetrator not shown).
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Figure B-20

Contours of vertical stress at 2.4 mns (deformable penetrator not shown).
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Figure B-23

Vertical velocity history (ni/s) for point 1 at accelerometer.
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Figure B-24

Vertical displacement history (m) for point 1 at accelerometer.
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Figure B-28

DeceJeration >isto-,y (g) for poirnt 5. 28 mm behind penetrator tip and 6 mm from

cental axis.
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Figure B-32

Deviator stress, J2, history (Pa) for point 3,0.79 m behind penetrator tip and 69 mm

from central axis. (Octahedral shear stress = /3 (J2)).
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Figure B-33
Pressure history (Pa) for point 4. 1.39 m behind penetrator tip and 69 mm f'rom

central axis.
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Deviator stress, J2, history (Ila) fo~r point 4,.1-39 n behind penetrator tip and 69 mm

frmcnrlacs othdalsersrs F/ .2)

278



~~ DEFORMABLE BODY FOR WATCHINGHILL__

Masle

I; -L

IN

POINT 6 TIME

Figure B-35
Pressure history (Pa) for point 6,4~8 mm behind penetrator tip and 27 mm from central

axis.
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Figure B-37

Normal stress history (Pa) for point 7, 0.14~ m behind penetrator tip and LJi mm from

central axis.
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Figure B-39
Nnrrnal stress history (Pa) for point 9, 0.38 m behind penetrator tip and 77 nun from

central axis.
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Figure B-4O

Soil kinetic energy 1 radian vs time (deformable penetrator).
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Radial velocity history (m/s) in soil er range 75 mm, depth 0.1 m (deform&'--.e

penetrator).
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Figure B-42

Vertical velocity history (m/s) in soil at range 75 •nun depth 0.1 in (deforinable

penetrator)..

.....
" ~~286 •

-•

.~.v - .



1"
,...*-DEFORMABLEBODY FOR WATCHINGHILL

____ Al

TIM

FPigure B-43
Radial di,;placenient history (in) in soil at range 75 imn, depth 0.1 m (de±'ormable

p enetrator).
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S•'igure B-45

• Pressure histor.y (Ps) in soil at range 75 mm, depth O.2. m (deformnable penetrator).
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Figure B-4t6

Deviator stress, J2, history (Pc) in soil at range 75 mmn, dep4-h 0.1 na (de±'ormable

penetrator), (octahedral shear stress = ~~(J2)).
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Radial velocity history (m/s) in soil at range 75 nun, depth Q.; m (deformable

penetrator).

291

.SIP

..- -. I ,0- - - - - - - - - --0



...,. DEFORMABLE BODY FOR WATCHING HILL

AA

---- --- -- - - -- ---



**..*~ EFORPIABLEBODY FORWATCHING HILL -_ _

,. 40~g ___

id~Ul - - B-4

Radil dsplaemet hstor (m in oilat ange75 m, dpth0.2m (dfofabl

pene tra tor)- - --

er293

.; .



DEFORMABLEBODY FOR WATCHING HILL

Mass

g 6g6I101111c- ft- *.ut -1=w -. - 6-6

Figure B-53
Vertical displacement history (mn) in soil at range 75 mm, depth 0.2 mn (deforinable

penetrator).
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Figure B-52

Deviator stress, J2, history (Pa) in soil at range 75 mm, depth 0.2 mn (defforinable

penetrator).
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Figure B-53

Radial velocity history (n/s) in soil at rEnge 75 ra=, depth 0,4 in (deformable
penetratur).
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Figure B-54

Vertical velocity history (m/s) in soil at range 75 rmm, depth 0. m (cleformable

penetratur).
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Radial diLplacement history (m) in soil at range 75 null, lOept 0.4 m (defoinable

penetrator).
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Figure B-61

Radial displacement history (m) in soil at range 0.14 m, depth 0.. m (deformable

penetrator).
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Figur'e B-62

Vertical disniaceernet history (mn) in soil at range o.14 mn, depth 0.1 mn (de±formnable

peiietrator).
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Deviator stress, J2, history (Pa) in soil at range 0.114 m, depth 0.1 mn (defcrinable

penetrator).
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Vertical velocity history (rn/c) in soil at range 0.14t m, depth 0.2 mn (deformable[eeruo)
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F'igure B-.78
Vertical velocity history (rn/s) in soil at range 0.28 m, depth 0.1 a (def'orinable
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Vertical displacement history (mi) in soil at range 0.28 m, depth 0.1 mn (de±'ormiable
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Deviator stress, J2, history (Pa) in soil at range 0.28 m, depth 0.1 mo (de±'ormpble

penetrator).
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Deviator stress, J2, history (Pa) in soi1 at range 0.28 •in, depth 0.2 in (deforinable :
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Figure B-89

Ra~dial. velocity history (rn/s) in soil at range 0.28 mn, depth 0.4 mi (deformnable

penetrator).
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Vert.l.cal displacement history (m) in soil at range 0.28 m, depth 0.4 in (deforuiab.e
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Figure B-93

Pressure history (Pa) in soil at range 0.28 m, depth 0.4 m (defornable penetrator).
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Figure B-96

Vertical velocity history (tn/s) in soil at range 0.44 m, depth 0.2. r (deformable

penetrator)
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Pressure history (Pa) in soil at range 0.4~4 m, depth 0.1. m (deforinable penetrator).
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Deviator stress, J2, history (Pa) in voil at range o.44 m, depth 0.1 in (deformnable

ponetrator).
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Radial velocity history (m/s) in soil at range o.44 in, depth 0.2 m (deformable

penetrator).
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Figure B-102

Vertical velocity history (mis) in soil at ranpe 0.44 m, depth 0.2 m (deforifable( penetrator).
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Figure B-103
Radial displacement history (m) in soil at range o.44 il, depth 0.2 vi (deformable

pen •Lrator).
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Figure B-106
Deviator stress, J2, history (Pa) in soil at range 0.44~ m, depth 0.1 m (deformable
penetrator) .
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